Tabela binomial para n = 2, n = 3, n = 4, n = 5 en = 6

Um importante discreto variável aleatória é uma variável aleatória binomial. A distribuição desse tipo de variável, denominada distribuição binomial, é completamente determinada por dois parâmetros: n e p. Aqui n é o número de tentativas e p é a probabilidade de sucesso. As tabelas abaixo são para n = 2, 3, 4, 5 e 6. As probabilidades em cada uma são arredondadas para três casas decimais.

Antes de usar a tabela, é importante determinar se uma distribuição binomial deve ser usada. Para usar esse tipo de distribuição, devemos garantir que as seguintes condições sejam atendidas:

  1. Temos um número finito de observações ou ensaios.
  2. O resultado do teste de ensino pode ser classificado como um sucesso ou um fracasso.
  3. A probabilidade de sucesso permanece constante.
  4. As observações são independentes uma da outra.

A distribuição binomial fornece a probabilidade de r sucessos em um experimento com um total de n ensaios independentes, cada um com probabilidade de sucesso p. As probabilidades são calculadas pela fórmula C(n, r)pr(1 - p)n - r Onde C(n, r) é a fórmula para combinações.

instagram viewer

Cada entrada na tabela é organizada pelos valores de p e de r. Há uma tabela diferente para cada valor de n.

Outras tabelas

Para outras tabelas de distribuição binomial: n = 7 a 9, n = 10 a 11. Para situações em que np e n(1 - p) são maiores ou iguais a 10, podemos usar o aproximação normal à distribuição binomial. Nesse caso, a aproximação é muito boa e não requer o cálculo dos coeficientes binomiais. Isso oferece uma grande vantagem, pois esses cálculos binomiais podem estar bastante envolvidos.

Exemplo

Para ver como usar a tabela, consideraremos o seguinte exemplo de genética. Suponha que estamos interessados ​​em estudar os filhos de dois pais que, sabemos, têm um gene recessivo e dominante. A probabilidade de uma prole herdar duas cópias do gene recessivo (e, portanto, ter a característica recessiva) é 1/4.

Suponha que desejemos considerar a probabilidade de que um certo número de crianças em uma família de seis membros possua essa característica. Deixei X seja o número de crianças com essa característica. Olhamos para a mesa para n = 6 e a coluna com p = 0,25 e veja o seguinte:

0.178, 0.356, 0.297, 0.132, 0.033, 0.004, 0.000

Isso significa para o nosso exemplo que

  • P (X = 0) = 17,8%, que é a probabilidade de nenhuma das crianças ter o traço recessivo.
  • P (X = 1) = 35,6%, que é a probabilidade de uma das crianças ter o traço recessivo.
  • P (X = 2) = 29,7%, que é a probabilidade de duas das crianças terem o traço recessivo.
  • P (X = 3) = 13,2%, que é a probabilidade de três das crianças terem o traço recessivo.
  • P (X = 4) = 3,3%, que é a probabilidade de quatro das crianças terem o traço recessivo.
  • P (X = 5) = 0,4%, que é a probabilidade de cinco das crianças terem o traço recessivo.

Tabelas para n = 2 en = 6

n = 2

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .980 .902 .810 .723 .640 .563 .490 .423 .360 .303 .250 .203 .160 .123 .090 .063 .040 .023 .010 .002
1 .020 .095 .180 .255 .320 .375 .420 .455 .480 .495 .500 .495 .480 .455 .420 .375 .320 .255 .180 .095
2 .000 .002 .010 .023 .040 .063 .090 .123 .160 .203 .250 .303 .360 .423 .490 .563 .640 .723 .810 .902

n = 3

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .970 .857 .729 .614 .512 .422 .343 .275 .216 .166 .125 .091 .064 .043 .027 .016 .008 .003 .001 .000
1 .029 .135 .243 .325 .384 .422 .441 .444 .432 .408 .375 .334 .288 .239 .189 .141 .096 .057 .027 .007
2 .000 .007 .027 .057 .096 .141 .189 .239 .288 .334 .375 .408 .432 .444 .441 .422 .384 .325 .243 .135
3 .000 .000 .001 .003 .008 .016 .027 .043 .064 .091 .125 .166 .216 .275 .343 .422 .512 .614 .729 .857

n = 4

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .961 .815 .656 .522 .410 .316 .240 .179 .130 .092 .062 .041 .026 .015 .008 .004 .002 .001 .000 .000
1 .039 .171 .292 .368 .410 .422 .412 .384 .346 .300 .250 .200 .154 .112 .076 .047 .026 .011 .004 .000
2 .001 .014 .049 .098 .154 .211 .265 .311 .346 .368 .375 .368 .346 .311 .265 .211 .154 .098 .049 .014
3 .000 .000 .004 .011 .026 .047 .076 .112 .154 .200 .250 .300 .346 .384 .412 .422 .410 .368 .292 .171
4 .000 .000 .000 .001 .002 .004 .008 .015 .026 .041 .062 .092 .130 .179 .240 .316 .410 .522 .656 .815

n = 5

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .951 .774 .590 .444 .328 .237 .168 .116 .078 .050 .031 .019 .010 .005 .002 .001 .000 .000 .000 .000
1 .048 .204 .328 .392 .410 .396 .360 .312 .259 .206 .156 .113 .077 .049 .028 .015 .006 .002 .000 .000
2 .001 .021 .073 .138 .205 .264 .309 .336 .346 .337 .312 .276 .230 .181 .132 .088 .051 .024 .008 .001
3 .000 .001 .008 .024 .051 .088 .132 .181 .230 .276 .312 .337 .346 .336 .309 .264 .205 .138 .073 .021
4 .000 .000 .000 .002 .006 .015 .028 .049 .077 .113 .156 .206 .259 .312 .360 .396 .410 .392 .328 .204
5 .000 .000 .000 .000 .000 .001 .002 .005 .010 .019 .031 .050 .078 .116 .168 .237 .328 .444 .590 .774

n = 6

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .941 .735 .531 .377 .262 .178 .118 .075 .047 .028 .016 .008 .004 .002 .001 .000 .000 .000 .000 .000
1 .057 .232 .354 .399 .393 .356 .303 .244 .187 .136 .094 .061 .037 .020 .010 .004 .002 .000 .000 .000
2 .001 .031 .098 .176 .246 .297 .324 .328 .311 .278 .234 .186 .138 .095 .060 .033 .015 .006 .001 .000
3 .000 .002 .015 .042 .082 .132 .185 .236 .276 .303 .312 .303 .276 .236 .185 .132 .082 .042 .015 .002
4 .000 .000 .001 .006 .015 .033 .060 .095 .138 .186 .234 .278 .311 .328 .324 .297 .246 .176 .098 .031
5 .000 .000 .000 .000 .002 .004 .010 .020 .037 .061 .094 .136 .187 .244 .303 .356 .393 .399 .354 .232
6 .000 .000 .000 .000 .000 .000 .001 .002 .004 .008 .016 .028 .047 .075 .118 .178 .262 .377 .531 .735